Solving time-(in)dependent Schrödinger equation with Smolyak scheme using a system-bath like partition
David Lauvergnat  1@  
1 : Institut de Chimie Physique, Bâtiment 349, Université Paris-Saclay, 91405 Orsay Cedex France
CNRS : UMR8000, Université Paris-Saclay,Sorbonne Universités

Solving the Schrödinger equation using method using a multidimensional grid such as DVR, FBR-DFR or pseudo-spectral approaches [1] is limited by the number of degrees of freedom, d, of the system. With these methods using direct-product, the numerical complexity grows exponentially with d and it is relatively easily to study four (d=6) or five (d=9) atomic systems. This limit can be pushed away using contraction techniques [2-4], pruned basis sets [5] or schemes with a basis function selection. [6]

Somehow, the Smolyak scheme [7-9] can be viewed as an approach with a selection of basis functions and a sparse grid adapted to that basis set. The parameter, L, controls the selection and thus the size of the basis set and the grid. With this scheme, the numerical complexity grows as a polynomial of degree L with d. Therefore, systems up to 12 degrees of freedom can be studied, [10-12] although larger systems (d=21) are possible if few states are needed.[13] 

This limit can be pushed away using a system-bath separation, and in our Smolyak scheme, three Lparameters are required: [14] (i) Ls for the degrees of freedom associated with the system part. (ii) Lb associated with the bath mode. (iii) Lm a parameter controlling the coupling between the system and the bath. 

This system-bath separation has no limitation with respect to the form of the Hamiltonian and it works well when the coupling between the system and the bath is weak and typically: Ls >> Lb and Lm > Ls (Lm=Ls+1 or Ls+2 can be used). 

To illustrate the advantages and the limitations of this approach, time-independent and time-dependent applications are presented:

 - The effect of the rotation-translation motions (bath modes, up to 120) of the water shell on the rotation-translation H2 motions (system modes, 5) in clathrate hydrate. [14]

- The photoisomerization of a retinal chromophore model with 2 active modes (system) and 23 modes (bath). [15]

 

References:

[1] Light, J. C., Carrington Jr, T. Advances in Chemical Physics, 2000114, 263–310.

[2] Wang, X.-G., Carrington, T. The Journal of Chemical Physics, 2008129, 234102.

[3] Felker, P. M., Bacic, Z. J Chem Phys20222021, 244111

[4] O. Vendrell, H.-D. Meyer, J Chem Phys 2011134, 044135.

[5] Cooper, J., Carrington, T. The Journal of Chemical Physics, 2009130, 214110.

[6] J. M. Bowman, S. Carter, X. Huang, Int Rev Phys Chem 200322, 533–549.

[7] S. A. Smolyak, Soviet Mathematics Doklady 19634, 240.

[8] G. Avila, T. Carrington, J Chem Phys 2009131, 174103.

[9] D. Lauvergnat, A. Nauts, Physical chemistry chemical physics 201012, 8405–12.

[10] D. Lauvergnat, A. Nauts, Spectrochimica Acta Part A: 2014119, 18–25.

[11] G. Avila, T. Carrington, J Chem Phys 2017147, 064103.

[12] G. Avila, E. Mátyus, J Chem Phys 2019150, 174107.

[13] Lauvergnat, D., Nauts, A., ChemPhysChem, 202324, 202300501.

[14] A. Chen, D. M. Benoit, Y. Scribano, A. Nauts, D. Lauvergnat, J Chem Theory Comput 202218, 4366–4372.

[15] Pereira, A., Knapik, J., Chen, A. et al. Eur. Phys. J. Spec. Top. 2023232, 1917–1933


Online user: 3 Privacy
Loading...